
Towards Informatic Analysis of Syslogs

Jon Stearley
Sandia National Laboratories
jrstear@sandia.gov

Abstract

The complexity and cost of isolating the root cause
of system problems in large parallel computers generally
scales with the size of the system. Syslog messages provide
a primary source of system feedback, but manual review is
tedious and error prone. Informatic analysis can be used
to detect subtle anomalies in the syslog message stream,
thereby increasing the availability of the overall system. In
this paper I describe the novel use of the bioinformatic-
inspired Teiresias algorithm to automatically classify sys-
log messages, and compare it to an existing log analysis
tool (SLCT). I then describe the use of occurrence statistics
to group time-correlated messages, and present a simple
graphical user interface for viewing analysis results. Fi-
nally, example analyses of syslogs from three independent
clusters are presented.

1. Syslog Background and Related Work

All event logs have a timestamp of the event and some
log message. In some log domains the vocabulary of
terms (or phrases) which can exist in the message are well-
defined and limited (I.e. SNMP logs, phone network logs,
etc), but syslog vocabulary is notoriously unlimited. The
syslog RFC [1] defines a syslog message to contain a times-
tamp, a string identifying the source of the message (the de-
vice generating the message), and a free-format 1024-byte
ASCII description of the event (identified as the “MSG”
portion of the message). This information triple is what is
referred to as “message” throughout this document. Due to
its tenure and flexibility, syslog is the most widely avail-
able event log protocol. Syslog messages are commonly
generated by many devices for many reasons, ranging from
hardware faults to normal user actions (login, logout, etc)
- resulting in an untenable number of lines of text for re-
view. This glut of data often results in the useful informa-
tion therein being very inefficiently gleaned, or going com-
pletely unused. Furthermore, syslog verbosity levels can be
increased in order to provide more information (for exam-
ple, more advance warning of problems), but this is not of-

ten done because the amount and content variance of even
terse log verbosity levels can be overwhelming. Steinder
and Sethi provide an excellent overview of the approaches
to the ongoing need for event log analysis [2], with the spe-
cific goal of fault localization in complex networks. Figure
1 provides some sample syslog messages which are used in
examples later in this document.

Expert systems [3] comprise the most common log anal-
ysis approach, in which a human expert enumerates a set
of rules, consisting of regular expressions and responses to
take when matching messages are encountered (for exam-
ple: ignore as benign, alert via email or pager, etc). Swatch
[4], SEC [5] , and logsurfer [6] are popular implementa-
tions of this approach. Prewett describes using logsurfer
specifically for monitoring Linux cluster syslogs [7] - us-
ing 1221 hand-written rules! The time and rigor required to
generate a sufficiently rich rule set is prohibitive for many
sites. If insufficient effort is invested, the resulting false-
positive and false-negative rates generally kill off the effort
completely. An example false-negative is not receiving an
alert for a message deserving an alert, but is ignored due an
imprecise “ignore” rule. An example false-positive is to re-
ceive alerts for benign messages which match an imprecise
“alert” rule. The difficulty of writing and maintaining reg-
ular expressions for monitoring is proportional to the num-
ber of types of messages present, and the rate at which this
set of message types change (for example, additions of new
devices or software, or changes in user behavior). Sandia
Laboratories Cplant and Institutional Computing Clusters
also use logsurfer - but with only 519 lines of rules.

Visualization is another popular approach to log analy-
sis. Takada has produced interesting visualizations of time
statistics in 2-D plots [8] and source relationships in 3-D
images [9]. Hoagland has explored visualization of audit
logs as directed graphs [10]. Girardin [11] has produced
spring, self organizing map, and parallel coordinates visu-
alizations of event logs, and Couch has presented tools for
visualizing as time series, and various 2-D plots towards
anomaly and correlation discovery [12]. While these are
very interesting representations of log data, no similarity
metric or presentation type is widely accepted as an ef-
fective answer to the problem of analyzing logs. In ar-

1

guably the most novel presentation approach, Gilfix au-
ralizes event sequences [13], complete with sound-scape
themes including “wetlands” and “jungle”! While this pre-
sentation is extremely creative and effective, it may not re-
sult in a widely acceptable long-term work environment,
and provides no mechanism to understand exactly what is
anomalous in a sequence of messages (“did you hear that?”
“hear what?”).

Simple Network Management Protocol (SNMP [14])
generates event logs which generally have very limited
and well-documented vocabulary1 compared to syslogs (by
good design!). Most analysis approaches focus on SNMP
logs. Hellerstein et al have excellent results on discover-
ing and modeling time and sequence correlation in SNMP
logs, including some useful visualization[15, 10]. Using
SNMP logs avoids the complexities associated with large-
vocabulary free-format messages, but their pattern discov-
ery work is directly applicable to syslogs once message
types have been determined. Both log streams are gener-
ated over large and complex networks, with correlations
among messages from different sources. By contrast, this
document focuses on strategies to automatically generate
optimally-precise sets of message types.

In summary, the existing and increasing number of pub-
lications, tools, and commercial services2 indicate that
event log analysis is a well-studied but open problem.

2. Analyst Thought Process

With the specific goal of increasing supercomputer RAS
(reliability, availability, and serviceability), we intend to
produce a machine-learning analysis system which enables
content-novice analysts to efficiently understand evolving
trends, identify anomalies, and investigate cause-effect hy-
potheses in large multiple-source event log sets. With this
in mind (and the assumption that malfunctions and/or mis-
use should not be not the site norm), we have sought to cap-
ture the thought process of log analysts, rather than their
log-specific expert knowledge. The overarching question
is simply, “what message stream aspects are strongly cor-
related with system malfunctions and/or misuse?” Defin-
ing “normal” is of course the elusive key to any anomaly-
detection strategy - the following are more specific restate-
ments of the above question, whose quantitative answers
we believe should form a sufficient “normal” with which to
approach our goal.

Q1 What message content and occurrence rate is normal?

1“port 5 up”, “port 5 down”, “port 5 traffic threshold exceeded” are
example SNMP messages

2see http://www.counterpane.com/log-analysis.html and
http://www.loganalysis.com for extensive listings of available log
analysis tools and services

Which messages are always exactly the same (for ex-
ample the first two lines in Figure 1)? Which mes-
sages are always the same except for certain terms (for
example,which numbers in the dns message in Figure
1 normally change over time, and which ones do not)?
Does each message type have an associated “normal”
occurrence rate (hourly, weekly, bursty when users
start work in the morning, etc.)?

Q2 What message groups are normal? What sequence of
messages indicates a single event? Which messages
usually occur proximate in time to each other, and
over what time span? Are there messages from multi-
ple sources which form reliable sequences?

Q3 Can devices be classified by their output message
stream? Are there sets of hosts which produce very
similar message streams (for example all compute
nodes verses service nodes in a cluster, or hosts which
tend to have memory problems, and those which do
not)? If so how frequently and why do host classifica-
tions change?

Q4 Can users or applications be classified by their result-
ing message stream? Are there distinctive characteris-
tics about the message streams generated while hosts
are used by certain users, or executing certain applica-
tions?

Q5 Are device-to-device and/or job-to-job log stream simi-
larities sufficient to identify hardware or software fail-
ures?

This document only addresses the first two questions, the
others are topics of ongoing work but are included here for
review and discussion.

3. The Sisyphus Toolkit

Log analysis is commonly considered a never-ending
curse due to the tedium involved and elusiveness of a suc-
cessful automated strategy - sharing these views I have
named the log analysis toolkit Sisyphus3. It does not aim
to completely automate the process, but rather provides
wedges and levers to speed and ease the task of rolling
logs up the hill of system monitoring and debugging. The
toolkit is a collection of third-party and original compo-
nents which currently provides three distinct capabilities:
automated generation of message types, automated group-
ing of time-correlated messages, and interactive review of
these results.

3In Greek mythology, Sisyphus was given the eternal punishment of
pushing a large rock up a hill, only to have it always roll back down

2

Nov 25 17:54:03 n-0.t-37 in.rshd[570]: connect from 192.168.254.3
Nov 25 17:54:48 n-0.t-37 in.rshd[580]: connect from 192.168.254.3
Dec 20 05:41:18 dns named[285]: XSTATS 1008852078 1007338854 RR=363555 RNXD=30161 RFwdR=220973 RDupR=775 RFail=1354
RFErr=0 RErr=226 RAXFR=76 RLame=9094 ROpts=0 SSysQ=80234 SAns=2650384 SFwdQ=215128 SDupQ=51336 SErr=0 RQ=2689813
RIQ=5 RFwdQ=215128 RDupQ=4507 RTCP=18234 SFwdR=220973 SFail=13 SFErr=0 SNaAns=444744 SNXD=136333 RUQ=0 RURQ=0 RUXFR=0
RUUpd=5994
Feb 22 07:01:54 l105 CROND[6568]: (root) CMD (run-parts /etc/cron.hourly)
Feb 22 07:02:11 l227 CROND[23593]: (root) CMD (run-parts /etc/cron.daily)
Feb 22 07:03:46 l227 CROND[23593]: (root) CMD (run-parts /etc/cron.weekly)
Feb 22 07:05:15 ll02 CROND[28698]: (jack) CMD (/bin/rm ~/gram_job_mgr_*.log)

Figure 1. Sample syslog lines

3.1. Using Teiresias for Automated Message Typing

Teiresias4 is a pattern discovery algorithm originally de-
veloped for bioinformatics at IBM which has received con-
siderable attention [16, 17, 18] and has been applied out-
side its domain, including for security anomaly detection
[19]. It discovers all patterns (called “motifs”) in categor-
ical (non-numeric) data of at least a user-given specificity
and support. More explicitly, given a set of strings X com-
posed of characters C, Teiresias finds all motifs M (com-
posed of characters C and a don’t-care wildcard “*”) hav-
ing at least a specificity of L/W (where L is the number
of fixed characters from C, and W is the total width of the
motif including wildcards), which occur at least K times in
X . It first hashes all motifs of length W appearing in the
data, then prunes those not meeting the minimum support
criteria K, and then conducts a “convolution” phase where
all remaining motifs are glued together in order to yield
the longest motifs existing in the data (leveraging the prop-
erty known as “downward closure” [20]). Output motifs are
carefully sorted by decreasing specificity and maximality.
For example, suppose motif mi and mj match exactly ex-
cept that mj is shorter (less specific). If they occur the same
number of times then mj is discarded and only the “max-
imal” motif mi is output. If however mj has higher sup-
port, it does present additional information about the data,
and is thus included in the output, but only after mi. See
the above references for more details on how this is accom-
plished (in worst-case exponential time, but most datasets
yield results in polynomial time). These features, coupled
with its downloadable-for-research license, convinced us to
explore its applicability to event log analysis.

Teiresias was originally developed to work with only
very small vocabulary sets, but was later also released as
teiresias_int, which is capable of handling a vocabulary of
32-bit integers (deemed sufficient for log analysis). Be-
fore logs can be analyzed with teiresias_int (which must
be downloaded separately), they must be preprocessed by
substituting a unique integer for each unique word (and the
reverse mapping is performed on the resulting teiresias_int

4Teiresias was a Zeus-empowered prophet and sage in
Greek mythology. Download or ask teiresias questions at
http://cbcsrv.watson.ibm.com/Tspd.html

output). This is accomplished by a Perl script named dic-
tify which splits words on whitespace, with the following
exceptions:

• Message timestamp and source are omitted - they are
deferred to a later stage of examination.

• Words containing an equals (=) sign are split into two,
in order to accommodate messages containing words
such as “variable_name=value” (I.e. the dns line
in Figure 1). The pair is reattached upon conversion
back into strings.

• Numeric Process IDs (PID) are omitted. It is common
for messages to contain “program_name[PID]:”,
where the PID changes from one invocation to the
next. If PID were not omitted, the resulting inte-
ger given to Teiresias would obscure the common
“program_name” prefix. I currently consider the
benefit of exposing the common program_name to
Teiresias to outweigh the loss of PID, which is con-
verted to a wildcard upon reverse conversion into
words (I.e. “[*]: ”). Preserving PID by splitting as
is done with variable_name=value pairs may be
attempted in the future, as it would enable the detec-
tion of extra or missing processes during the startup of
identically-configured nodes. For example, the “PCT”
process is always PID 430 on Cplant compute nodes
(not functionally necessary, but is certainly “normal”).

The word-integer mapping is saved in file X.dict, and the
now integer-only syslog X.dat is passed to teiresias_int
which finds all L,W,K motifs (resulting in X.thr). The clas-
sify script then compares each message against this output,
noting only the first match for each - effectively selecting
only the maximal motifs from the total set. It then per-
forms the multi-line grouping described in Section 3.3. Fi-
nally, these results are converted back into strings (dictify
-r), saved to file X.rex, and displayed with logview (Sec-
tion 3.4). Messages not matching any motifs (outliers) are
saved to the file X.nolab for review, or for iterative process-
ing with different arguments. The entire process is driven
by a front-end script called teirify which takes L W K as
arguments (with meanings as described above). Figure 2
shows the complete flow of data through teirify.

3

‘teirify L W K X‘

X

logview

dictify

label

X.noclass

X.dict

X.dat

dictify -r

teiresias_int

classify

X.thr

X.cla

X.rex

Figure 2. Graph of data flow through the teirify
program. Ellipses denote files, boxes denote
programs, teiresias_int is dashed to indicate
that it is not included in the Sisyphus toolkit
(separate download from IBM).

As a simple example, consider a log file containing the
lines in Figure 1, along with an additional 3118 CRON
lines (additional 2787 hourly, 232 weekly, and 99 daily
messages exactly like the ones in Figure 1). ‘teirify 2 3
100‘ results in four motifs:

CROND[*]: (root) CMD (run-parts /etc/cron.hourly)
CROND[*]: (root) CMD (run-parts /etc/cron.weekly)
CROND[*]: (root) CMD (run-parts /etc/cron.daily)
CROND[*]: * CMD

With support of 2787, 232, 99, and 1 - highlighting the
last as a rare event (but similar to common events, since
it shares two words with all the other CRON messages).
The other lines are appropriately assigned to a NOCLASS
group, as they are unlike all other lines in the file. In effect,
teirify places the messages into three categories of increas-
ing anomaly:

• messages having a support of at least K (frequent),

• messages having a support less than K (infrequent) but
are similar in content to frequent messages,

• messages which are both infrequent and anomalous in
content.

This categorization enables extremely efficient review of
the log file. It is possible to start with a large value of K, and
then iterate on X.nolab using successively smaller values,
also decreasing the L/W ratio. I have found this largely
unnecessary for log data, and tend to always use ‘teirify 2
3 10‘. For example, the above results do not change for K
ranging from 2 to 231, or for a lower ratio of L/W. Further
examples are provided in Section 4.

It is not practical to use Teiresias to examine partial
words (for example, convert characters instead of words
into integers and then pass through teiresias_int) because
it does have support for variable-sized gaps in motifs.
Whereas this could be attempted, the L/W ratio required
to generate useful results would likely prove computation-
ally prohibitive. This also makes it impractical for use in
discovering sequences of messages, because message se-
quences interleave differently according to system activity,
which is extremely variable (true for a single host, let alone
a log set from multiple sources).

The sole difficulty I have encountered with Teiresias is
very significant however: the vocabulary size of most sys-
logs requires very large amounts of system memory - I have
only rarely been able to process more than 10,000 lines at
a time using 1.5GB of memory. I believe this is due to the
fact that all motifs of L/W specificity are enumerated dur-
ing the first phase. This implies that all words are frequent,
which is not the case for syslogs [21]. It is very likely that
if Teiresias were modified to first determine which words

4

have a support of at least support K before motif enumera-
tion (as does SLCT, see next section), the bottleneck would
be avoided. This bottleneck can be currently mitigated by
passing a small log file through teirify, using the results
to filter out all matching messages from a larger file, and
then passing the resulting outliers back through the process
- iterating until a sufficiently large time range has been an-
alyzed.

Despite its limitations to small data sets, Teiresias’
input-parameter insensitivity for log data, automatic mes-
sage typing, and anomaly categorization show it to be a
very useful and effective pattern discovery engine for auto-
matic typing of syslog messages.

3.2. Using Simple Logfile Clustering Tool (SLCT)
for Automated Message Typing

Risto Vaarandi’s SLCT5 uses an algorithm specifically
designed to detect word clusters in log messages [21]. It
makes three passes through the data to accomplish this ob-
jective. A hash counting all words and their position in
the line is generated on the first pass through the data (“the
dog ran” is be hashed into three keys: “1_the”, “2_dog”,
“3_ran”). Words having a support less than s are then
pruned from the hash, and a new hash of message word
clusters is generated during a second pass through the data
(the messages “the dog ran” and “the deer ran” would gen-
erate a key of “1_the 2_* 3_ran” for s=2 - the second word
is the wildcard “*” since dog and deer only appear once).
An optional third pass can be performed in which wild-
card positions are refined with constant heads or tails if
possible (in our example, “2_*” becomes “2_d*” because
both dog and deer begin with d). The resulting word clus-
ter and their support is output, and any lines not match-
ing any word cluster are saved to a separate file for review
(“outlier” lines). SLCT executes faster than Teiresias, its
results are very similar, and it does not become memory-
bottlenecked as Teiresias does (enabling it to process very
large log sets). SLCT provides many command line ar-
guments, enabling very flexible behavior, but also requires
some careful thought in order to produce good results. For
example, slct -s 10 -b 16 -f ’[^[:space:]]+ (.+)’ -t ’$1’ -r
-j logfile tends to produce good results for standard syslog
files (specifies a support threshold of 10, omit first 16 bytes
and next word from consideration (timestamp and message
source), refine and join clusters). The addition of options
to specify common log formats (for example -syslog might
result in -b -f -t options similar to the above) would signifi-
cantly improve its usability.

There are two technical issues to overcome with SLCT.
The first is simply that no mechanism is provided to review

5SLCT is GPL-licensed and available at http://kodu.neti.ee/~risto/slct

which raw lines match which word cluster. This is a signif-
icant impediment in understanding its results (particularly
on logs resulting in diverse word clusters), and contributes
to the difficulty of identifying the optimal set of command
line arguments (minor changes to input arguments can have
drastic effects). To address this I am working to enable
its results to be reviewed with logview (see Section 3.4).
The second issue is related to SLCT’s optional join (-j)
option, which approximates Teiresias’ ability to categorize
message types. Again consider the example CRON logfile.
‘slct -s 100 -r‘ results in two word clusters:

CROND[*]: (root) CMD (run-parts /etc/cron.hourly)
CROND[*]: (root) CMD (run-parts /etc/cron.weekly)

with correct support of 2787 and 232 respectively, and
saves the remaining 103 lines in an outliers file. Adding
the -j option results in two additional word clusters:

CROND[*]: * CMD * *
CROND[*]: (root) CMD (run-parts *

with supports of 3119 and 99 (saving only 3 messages as
outliers). This does not clearly present additional informa-
tion about the log, failing to effectively highlight the single
message about user jack, or present the daily messages
as a separate group. If the support threshold is decreased
below 100 (-s 99 for example), the latter word cluster be-
comes:

CROND[*]: (root) CMD (run-parts /etc/cron.daily)

with support of 99, but user jack is still lost in the most
general CRON word cluster. While this CRON example is
intentionally simple, it illustrates a difficulty with using -
j which tends to quickly obscure subtle anomalies in real
log files, especially when combined with trial-and-error at-
tempts to identify the optimal value for support threshold
(-s).

There is preliminary support via a front-end script called
slctify which passes a log file through SLCT and displays
results with logview, this does not support the -j option at
time of this writing however. Given SLCT’s many strengths
and minor shortcomings, I expect it to replace Teiresias as
the preferred message typing engine in Sisyphus.

3.3. Automatic grouping of time-correlated mes-
sages

Having generated single-line message types, attention is
turned to grouping messages together which are correlated
in time. The median and standard deviation of inter-arrival
periods for all messages in each message type is calcu-
lated by the program classify, and the message types are
then grouped according to these statistics. For example if

5

message type mi matches line numbers 1, 7, 22, and 23
in file X, and the timestamps for those lines are (in sec-
onds) 60, 120, 180, 240, the median inter-arrival period
is 60, with a standard deviation of 0. This simple exam-
ple is a minute-periodic message type. Such (cron) mes-
sages are common at various periodicity, and are presented
in their period groups regardless of whether they happen
proximate to each other in time. The median is used as it
is somewhat more robust to outliers than the mean, such as
when “normal” periodic messages are not produced while
a node is turned off, which can drastically skew the inter-
arrival mean. Ma [22] describes using a chi-squared test of
the inter-arrival period histograms against a random-arrival
(Poisson) distribution to detect “partially-periodic” events.
This is certainly a more robust (and computationally expen-
sive) approach, but I have found the simpler statistics suffi-
cient for a first-order grouping of time-correlated messages.
They are useful even for non-periodic messages, because
different message types with similar support, inter arrival
mean, and inter-arrival standard deviation are in fact time
correlated and are thus grouped together. For instance con-
sider one thousand similarly-configured computers booting
- they will all emit a similar sequence of messages over a
similarly short time duration, regardless of node boot order
or concurrency. Each message in the boot sequence will
be typed as described in the previous sections, and the set
will be grouped together using their occurrence statistics.
This enables the entire set to be presented as a single unit
unit of one thousand “boot events” - a huge compression
of the syslog record, while still highlighting anomalous de-
viations in the boot events (for example, the rare change
in a hardware-check startup message, the occurrence of a
message which is “normally” not present during boots, a
change in the amount of memory detected (likely indicating
a failed DIMM), etc). This example is revisited in Section
4. Using complete inter-arrival histograms for the grouping
certainly would be more robust, and I plan to implement
this at some point in the future. Message type occurrence
statistics are included in the resulting X.rex file for review.

3.4. Interactive Review

An interactive Perl-Tk tool named logview is provided
in the Sisyphus toolkit, which enables efficient review of
the above results versus the original log file. A snapshot
of the application is not included in this document, but it is
simple to describe. The contents of X.rex are presented in
an upper window, and upon selection via the mouse the
corresponding raw messages appear in a lower window.
Multiple types can be selected via shift and control clicks,
enabling comparison of message types, such as compar-
ing frequent messages to infrequent-but-similar messages.
Once a questionable message has been identified, one of the

first questions a reviewer often has is, “at what other times
and from what other sources does this message appear?”
logview presents the answers to these questions with a sin-
gle click, showing all the messages which match the se-
lected message type. It is useful to display the messages
in type blocks for this review. If the reviewer wishes to
see the time-interleaving of multiple message types, an op-
tion is provided to display messages in their original order.
logview is intentionally simple, providing an extremely in-
tuitive and efficient means of reviewing system logs using
the results of the analyses described above.

4. Example Usage

Whereas it is impossible to demonstrate the efficiency
these interactive tools provide, this section presents some
brief examples of using Sisyphus to review logs from three
separate computer clusters as an attempt to further illustrate
its usefulness.

4.1. CPlant - Sandia National Laboratories Com-
putational Plant

There are multiple CPlant Linux clusters at Sandia Na-
tional Laboratories, the largest of which consists of over
1800 nodes. All but 24 nodes are disk-less, and every node
in the system generates syslog messages which are trans-
mitted and saved centrally using the excellent syslog-ng6

program. The system generates an average of 435,000 sys-
log lines per day, and as mentioned previously logsurfer
is used to monitor the production message stream. Cplant
however serves as both an operating system research and
production computation plant, and the message stream gen-
erated during each role is distinctive. Considerable effort
has been made to minimize the total time to reliably boot
all nodes in the cluster 7, and identifying minor anomalies
in the resulting bolus of messages is a challenging task.

An excerpt of running ‘teirify 2 3 10‘ on a 2840-line
file from a single Cplant rack produces 97 message types
(excerpt shown in Figure 3, matching all but 27 messages.
Immediately one notices a group of message types hav-
ing a support of 32, and a smaller group having a sup-
port of 33 - both groups having nearly identical inter-
arrival statistics (except for stddev). By selecting mes-
sages in each group one can quickly see that whereas all
the nodes in the set booted Linux, one node did not start
the Cplant runtime software (an intentional configuration
in this case, but demonstrates detection of an easily-missed
variation in the message stream). Comparing messages in

6syslog-ng available at http://www.balabit.com/products/syslog_ng/
7Using the Cluster Integration Toolkit, all 1800 disk-less nodes of

Cplant can be routinely booted in under ten minutes as described by Laros
and Ward [23]

6

Class Definitions
label k median stddev motif
L0 27 0 0 NOCLASS
L137 64 0 1 rte: succeeded
L47 33 1 80 RAM disk driver initialized: 16 RAM disks of 32768K size
L48 33 1 180 eth0: Digital DS21143 Tulip rev 65 at 0x8000, * IRQ 29.
L53 33 1 180 eth1: Digital DS21143 Tulip rev 65 at 0x8800, * IRQ 30.
L95 32 1 3 HWRPB cycle frequency (462962962) seems inaccurate - using the measured value of * Hz
L122 32 1 3 if=eth0, addr=* mask=255.255.255.0, gw=255.255.255.255,
L125 32 1 3 bootserver=192.168.37.2, rootserver=192.168.37.2, rootpath=/cluster/machine/diskless/rh-6.2-alpha/image
L146 32 1 1 rte-init: /cplant/init.d/enfs_client running: mount_nfs start
L144 32 0 1 rte-init: 1816 routes read (1816 valid). Max 15, avg 0.003855
L80 31 0 2 init.c:118 Using Alpha PCI_OFFSET_TSUNAMI (0xfffffd0000000000)
L118 28 1 196 Sending DHCP requests .., OK
L136 28 1 3 Memory: 1033592k available
L61 26 1 1 rte-init: Found a LANai type 7.2 with 2097152 bytes (2048kB) of memory unit 0
L62 6 3 6 rte-init: Found a LANai type * with 2097152 bytes (2048kB) of memory unit 0
L119 4 6 2 Sending DHCP requests * OK
L177 4 2 27 Memory: * available
L131 3 0 0 startup succeeded
L86 1 0 0 Looking up port of RPC 100005/1 on
L94 1 0 0 IP-Config: * Got DHCP answer from
L120 1 0 0 Sending DHCP
L123 1 0 0 if=* addr=* mask=255.255.255.0, gw=255.255.255.255,
L126 1 0 0 bootserver=* rootserver=* rootpath=/cluster/machine/diskless/rh-6.2-alpha/image
L134 1 0 0 Command line: ip=* root=/dev/nfs
97 of 178 motifs used
Class Membership List
L0 9 10 45 50 55 56 57 58 59 60 61 62 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
L1 1 2 3 4 5 6 7 8 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 46 47 48 49 51 52 53 54
...
2813 of 2840 (99%) lines matched (not in NOCLASS)
359 of 718 dictionary words used in above classes

Figure 3. sample X.rex excerpts

the two sets reveals that this node booted separately, and
then the others booted concurrently, accounting for the dif-
ferent inter-arrival standard deviation. The existence of
similar message types L136 and L177 quickly highlight
the fact that four nodes have a differing amount of mem-
ory than the others. Similarly it can be seen from mes-
sage types L61 and L62 that 26 nodes contain a LANai
type 7.2 network card, but 6 others contain a different
LANai version (two clicks in logview shows exactly which
nodes contain the differing version, 9.0 in this case). Very
quickly useful information has been gained from the log
regarding both software configuration and hardware dif-
ferences. By selecting message types L118 and L119 it
can even be observed that the DHCP messages for four
nodes differed from the rest by having “.?.,” instead
of “..,” - indicating slight network contention impact-
ing four hosts which in this case is harmless, but under-
scores Teiresias’ ability to highlight very minor anoma-
lies which easily go unnoticed in manual review. A few
clicks answers the question if these nodes are the ones with
different LANai cards or less memory - no in both cases,
but it is painless and efficient to get at these answers. Se-
lecting the NOCLASS type displays 27 messages, includ-
ing two which indicate a “TSUNAMI machine check
- correctable ECC error” on a single node, five
pairs over the same time period indicating “ABORT_LOAD
FIRST TRY ... unknown job ID” and “nfs:

task 64052 can’t get a request slot”, and
the remainder indicating warning messages pertaining to
NFS configuration. These lines are correctly presented as
the set deserving further investigation.

SLCT results for this log produced similar results, pro-
ducing 73 word clusters matching all but 64 outlier (NO-
CLASS) messages. Differences from Teiresias directly
follow the discussion of SLCT in Section 3.2. One ad-
ditional observation from comparing their results is that
Teiresias generated a message type of “root@admin-0
as root”, matching messages of different actual format
but containing that common substring. While the messages
are in fact related to a single event (a reliable sequence
from pam_rhosts_auth, PAM_pwdb, and in.rshd
processes), the vague message type violates the intention
of generating one message type being produced for each
actual format type (I.e. one message type per printf in
C code). SLCT does not produce this cluster due to the fact
that the words appear in different positions in the messages.
This is deemed another advantage of SLCT over Teiresias,
and indicates that word position information is useful.

An initial study of the content novelty rate in Cplant’s
message stream has also been conducted. The top plot in
Figure 4 displays the number of production messages per
day (all nodes), and the bottom plot displays the number
of word clusters generated by SLCT given various support
thresholds (-s ranging from 2 to 50). With s=10, 697 word

7

0 14 28 42 56 70 84 98
0

10000

20000

30000

40000

50000

T
ot

al
 M

es
sa

ge
s

pe
r D

ay

0 14 28 42 56 70 84 98
Time (days)

0

2000

4000

6000

SL
C

T
-g

en
er

at
ed

 W
or

d
C

lu
st

er
s

s=2 s=4 s=6
s=8

s=10

s=15

s=30

s=50

Figure 4. Message and Content Novelty Rate
on Cplant

clusters are generated on the first day, but the set grows rel-
atively slowly thereafter, experiencing rapid increases only
occasionally. These rapid increases in the number of word
clusters reflect bursts of content novelty in the message
stream, but they are not always correlated with bursts in
the raw message stream. For example, even the s=2 line
in Figure 4 does not rise significantly during the message
bursts on days 3, 4, and 5. Similarly, an alarm set for 35,000
messages per day (set median is 19,347) would trigger 29
times, whereas only four significant content novelty bursts
are seen with s=10. For all values of s, the message content
novelty rate is approximately constant most of the time -
this suggests the possibility of automatically determining a
content novelty rate threshold (likely in units of new word
clusters per time window) useful towards detecting unusual
information bursts in the message stream. This is a topic of
ongoing research.

4.2. Liberty - Sandia National Laboratories Insti-
tutional Computing Cluster

Liberty is a 256-node dual-XEON cluster at Sandia
which also runs Linux, has central syslog collection via
syslog-ng, and logsurfer monitoring. Sisyphus was used
to speed the process of creating the logsurfer configuration
(using both the message types as regular expressions, con-
texts utilizing the time statistics). The system administra-
tor who performed the task believed Sisyphus had reduced8

the total time required to establish the logsurfer by roughly
75% - and that a significant portion of that time was spent

8Sisyphus-aided initial establishment of logsurfer rules for Liberty
took roughly 12 hours total

manually converting from X.rex syntax into logsurfer syn-
tax (output to logsurfer syntax is planned for a future revi-
sion). The administrator who established the Cplant con-
figuration expressed his disappointment that Sisyphus was
not available earlier.

’teirify 2 3 10’ of a 6800-line logfile from a sin-
gle node shows that 1288 lines are generated exactly
every 30 minutes, suggesting it might be worthwhile
to tone down CRON messages. 39 messages ap-
pear in the NOCLASS type: “End of File...”,
“task_check: cannot reply to ...”, and
“im_eof: Premature end of message”, the
latter indicating scheduler problems on this node. Again
the NOCLASS type correctly highlights those messages
warranting further attention.

4.3. LosLobos - University of New Mexico High
Performance Computing Cluster

‘teirify 2 3 10‘ was run on 7000 lines of syslogs gen-
erated by 235 hosts over 12 hours, producing 58 message
types matching all but eight messages (NOCLASS). Five of
these eight lines indicated that a single host had a different
version of a program, and three lines indicated that a port
scan had occurred. After careful manual review of the log,
these lines were indeed the most interesting/anomalous.
Something as simple and minute as a software version mis-
match in one node of a parallel cluster can cause numerous
problems - the ability to quickly detect such inconsistencies
is a valuable debugging tool! Furthermore, automatically
highlighting the three lines in 7000 indicating an unautho-
rized port scan demonstrates value as a security tool as well
- anything which is rare in the message stream is flagged as
NOCLASS.

slct -s 10 on the same dataset produced 47 word clusters,
saving 50 messages as outliers. Differences with Teiresias
again match those described in Section 3.2.

As an aside, I have also analyzed UNM’s Computer Sci-
ence department logs with these tools, and teirify does cor-
rectly detect which numerical fields in the hourly dns statis-
tics messages (I.e. third line in Figure 1) normally change
and which do not.

5. Conclusions and Future Work

Advances resulting from recent international priorities
on informatics should be used as widely as possible, in-
cluding for system event log analysis. The bioinformatic-
inspired Teiresias algorithm has been shown to be effective
in automatically generating word-granular regular expres-
sions for system event logs. Furthermore its careful sort
order provides a near-optimal categorization of messages

8

into frequent, infrequent but content-similar to frequent,
and infrequent and content-novel sets. Whereas its mem-
ory requirements do not allow it to scale to very large log
sets, it provides very useful analysis of logs under 10,000
lines long. SLCT produces similar but less-effective re-
sults but does not suffer from prohibitive memory require-
ments. Whereas Teiresias could potentially be modified
to not include infrequent words in candidate motifs (likely
to eliminate the memory issues), it also has an algorith-
mic weakness compared with SLCT in that it does not use
word position information (shown above to produce erro-
neous motifs in some cases). These issues coupled with
SLCT’s open-source availability (and a friendly and helpful
author!) make it the message-typing engine of choice, and
I am modifying it accordingly. Very large log sets can be
automatically decomposed into message types. Once mes-
sages are typed, sequences of messages can be automati-
cally grouped using their inter-arrival statistics, providing
further consolidation of messages for review or subsequent
analysis.

Determining the optimal sort order for reviewing mes-
sage types is a topic of ongoing work, involving a combi-
nation of appearance order, type-to-type similarity, speci-
ficity, and support. The process of establishing rich moni-
toring rule sets could be further streamlined by outputting
SEC or logsurfer syntax directly from SLCT (or at least,
automatic conversion of output into appropriate syntax).
Another topic of ongoing work is the automatic determi-
nation of content novelty rate thresholds (likely in units of
new message types per unit time) useful in detecting the
most anomalous region of an event log.

The Sisyphus toolkit provides a good start towards in-
formatic analysis of syslogs by presenting messages in a
very high signal-to-noise manner, enabling efficient log re-
view and generation of monitoring rules - useful towards
the detection of component failure, misconfiguration, and
misuse.

Acknowledgement Many thanks to Nathan Dauchy,
George Davidson, Tim Draelos, Risto Vaarandi, Kevin
Boyack, Donna Johnson, and Jerry Smith for the many
helpful discussions on this topic and reviews of this doc-
ument.

Sandia is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed Martin Company, for the United
States Department of Energy under Contract DE-AC04-
94AL85000.

References

[1] C. Lonvick, “The bsd syslog protocol.” RFC3164,
August 2001.

[2] M. Steinder and A. Sethi, “The present and future of
event correlation: A need for end-to-end service fault
localization,” 2001.

[3] P. Jackson, Introduction to Expert Systems. Inter-
national Computer Science Series, Addison Wesley,
1986.

[4] S. E. Hansen and E. T. Atkins, “Automated system
monitoring and notification with swatch,” in USENIX
LISA’93 Conference Proceedings, 1993.

[5] R. Vaarandi, “Sec - a lightweight event correlation
tool,” in IEEE IPOM’02 Proceedings, 2002.

[6] Logsurfer is available at
http://www.cert.dfn.de/eng/logsurf/ and Logsurfer+
at http://www.crypt.gen.nz/logsurfer/.

[7] J. Prewett, “Analyzing cluster log files using log-
surfer,” in Proceedings of the 4th Annual Conference
on Linux Clusters, 2003.

[8] T. Takada and H. Koide, “Mielog: A highly inter-
active visual log browser using information visual-
ization and statistical analysis,” in USENIX LISA’02
Conference Proceedings, 2002.

[9] T. Takada and H. Koide, “Information visualization
system for monitoring and auditing computer logs,” in
IEEE Conference on Information Visualization, 2002.

[10] G. Liu, A. Mok, and E. Yang, “Composite events for
network event correlation.”

[11] L. Girardin and D. Brodbeck, “A visual approach
for monitoring logs,” in USENIX LISA’98 Conference
Proceedings, 1998.

[12] A. L. Couch, “Visualizing huge tracefiles with xscal,”
in USENIX LISA’96 Conference Proceedings, 1996.

[13] M. Gilfix and A. L. Couch, “Peep (the network au-
ralizer): Monitoring your network with sound,” in
USENIX LISA’00 Conference Proceedings, 2000.

[14] J. Case, “Simple network manage-
ment protocol (snmp).” RFC1157,
http://www.ietf.org/rfc/rfc1157.txt, May 1990.

[15] J. L. Hellerstein, S. Ma, and C. Perng, “Discovering
actionable patterns in event data,” IBM Systems Jour-
nal, vol. 41, no. 3, 2002.

[16] I. Rigoutsos and A. Floratos, “Combinatorial pattern
discovery in biological sequences: the teiresias algo-
rithm,” Bioinformatics, vol. 14, no. 1, 1998.

9

[17] A. Floratos and I. Rigoutsos, “On the time complex-
ity of the teiresias algorithm.” IBM Technical Report
RC21161, 1998.

[18] B. Brejova, C. DiMarco, T. Vinar, S. R. Hidalgo,
G. Holguin, and C. Patten, “Finding patterns in bi-
ological sequences.” University of Waterloo, project
report for CS798G, Fall 2000.

[19] A. Wespi, M. Dacier, and H. Debar, “An intrusion-
detection system based on the teiresias pattern-
discovery algorithm,” in EICAR Annual Conference
Proceedings, pp. 1–15, 1999.

[20] S. Brin, R. Motiwani, and C. Silverstein, “Beyond
market baskets: Generalizing association rules to cor-
relations,” Data Mining and Knowledge Discovery,
vol. 2, pp. 39–68, 1998.

[21] R. Vaarandi, “A data clustering algorithm for mining
patterns from event logs,” in IEEE IPOM’03 Proceed-
ings, 2003.

[22] S. Ma and J. Hellerstein, “Mining partially periodic
event patterns with unknown periods,” in Proceedings
of the 2001 International Conference on Data Engi-
neering (ICDE’01), pp. 409–416, 2001.

[23] J. Laros and L. Ward, “Implementing scalable disk-
less clusters using the network file system (nfs),” in
LACSI 2003 Conference Proceedings, 2003.

10

